Развитие систем защиты информации (реферат)

Бесплатно!

Реферат

по дисциплине: «Информатика»

на тему: «Развитие систем защиты информации»

Введение

В настоящее время общепризнанно, что удовлетворение все возрастающих потребностей современного общества при неуклонном увеличении народонаселения земного шара требует резкого повышения эффективности всех сфер общественной деятельности, при этом важнейшим и непременным условием такого повышения эффективности выступает адекватное повышение эффективности использования информационных ресурсов. Иными словами, для современного общества проблемы информационного обеспечения всех сфер деятельности по своей значимости и актуальности превосходят проблему дальнейшей индустриализации производства, которая до недавнего времени считалась одной из центральных. Подчеркивая это обстоятельство, говорят, что современное общество вступает в постиндустриальный период своего развития, который по всеобщему мнению должен быть назван информационным.

Под информационным обеспечением деятельности понимается предоставление каждому ее участнику всей необходимой ему информации с соблюдением требований своевременности, актуальности, релевантности и толерантности.

Следует отметить, что сложившаяся к настоящему времени мировая практика сбора, хранения, переработки и распространения информации, по всеобщему признанию, далеко не полностью удовлетворяет современным требованиям, причем практически по всем перечисленным выше параметрам. В связи с этим проблемы совершенствования систем информационного обеспечения считаются одними из наиболее актуальных и неотложных задач общества. В интересах их решения в последние годы ведутся весьма интенсивные и крупномасштабные исследования и разработки.

Однако интенсификация информационных процессов порождает ряд попутных и достаточно серьезных проблем, без эффективного решения которых вообще нельзя будет говорить об эффективности информатизации. Одной из наиболее острых проблем указанного плана выступает проблема надежной защиты циркулирующей в системе информационного обеспечения деятельности информации, т.е. предупреждение ее искажения или уничтожения, несанкционированной модификации, злоумышленного получения и использования и т.п. Особую остроту проблема защиты приобретает в связи с повсеместной и массовой компьютеризацией информационных процессов и особенно – в связи с устойчивой тенденцией объединения электронной вычислительной техники в информационно-вычислительные сети с доступом к их ресурсам массы пользователей.

Проведенные к настоящему времени исследования проблем защиты информации и имеющийся опыт практического решения соответствующих задач убедительно свидетельствуют, что эффективная защита может быть обеспечена лишь при взаимном согласовании целенаправленных усилий специалистов-профессионалов в области защиты и широкого круга руководителей и специалистов, соприкасающихся с информационными процессами, для чего всем им необходимы соответствующие знания и навыки.

1. Возникновение и история развития проблемы защиты информации

Проблема защиты информации, вообще говоря, имеет многовековую историю. Ведь даже наскальные рисунки (не говоря уже о древних рукописях) есть не что иное, как попытка сохранить информацию о реа­лиях объективного мира. Применение же специальных мер в целях сохра­нения информации в тайне практиковалось еще в древние времена: до­стоверно, например, известно, что выдающийся политический деятель и полководец древнего Рима Цезарь использовал для этих целей криптогра­фическое преобразование текстов сообщений (вошедшее в историю под названием шифра Цезаря), хотя, по современным представлениям, и весь­ма примитивное.

Но поскольку здесь рассматриваются вопросы защиты информации в автоматизированных системах ее обработки, то и ретроспективный анализ их происхождения и развития будем производить на глубину ре­ального существования этих систем.

Как и всякий другой опыт, опыт защиты информации в автоматизированных системах обработки данных (АСОД) представляет двоякий интерес: во-первых, в чисто познавательном плане и во-вторых, в плане обоснования наиболее рациональных путей решения такой далеко неор­динарной проблемы.

Следует, однако, заметить, что у нас в стране до недавнего времени все работы по защите информации были закрытыми, поэтому общедо­ступных публикаций практически не было. Это обстоятельство отрица­тельно сказалось на распространении опыта. В последнее время положе­ние существенно изменилось, однако понадобится значительное время для того, чтобы можно было составить достаточно репрезентативную выборку соответствующих работ.

В ведущих зарубежных странах (и, прежде всего, в США) рассматриваемая проблема находится в центре внимания специалистов и интенсивно разрабатывается уже более 50 дет. Достаточно красноречивым свидетельством этого внимания может служить тот факт, что число публикаций по различным аспектам защиты информации только в открытой печати исчисляется многими тысячами, причем среди них многие десятки – это публикации монографического характера. Издаются специальные журналы, регулярно проводятся конференции, соответствующие дисциплины включены в учебные планы всех вузов, готовящих специалистов по вычислительной технике и ее использованию.

В целях ознакомления заинтересованных читателей с работами зарубежных специалистов по защите информации в наших журналах опубликовано значительное число обзоров этих работ. Особую активность проявил журнал “Зарубежная радиоэлектроника”, в котором начиная еще с 1975 г. такие обзоры публиковались регулярно по 1 – 3 в год. Переведены на русский язык и изданы некоторые работы монографического характера.

В 1989 г. подготовлен и издан специальный выпуск журнала “Зарубежная электроника” (1989, №12), в котором помещено 11 тематически подобранных обзорных статей, дающих достаточно полное и систематизированное представление о взглядах зарубежных специалистов на проблему защиты и полученных ими результатах.

Прежде всего, зарубежные специалисты единодушны в оценке чрезвычайной важности проблемы защиты, причем в подтверждение приводятся многочисленные конкретные факты о злоумышленных действиях над информацией, находящейся в АСОД. Последствия таких действий нередко были достаточно тяжелы.

Под воздействием указанных выше фактов и в связи с расширяющейся открытостью и гласностью у нас в стране в последние годы резко возрос интерес к проблеме защиты информации в АСОД, а соответствующие работы ведутся широким фронтом и с растущей интенсификацией. Свидетельством сказанному служат следующие факты:

1.      Непрерывно растет число публикаций в открытой печати, среди которых имеются достаточно серьезные монографии.

2.      Регулярно проводятся специальные конференции и семинары.

3.      Издаются специализированные журналы: “Безопасность информационных технологий”, “Конфидент” и др.

4.      Организована регулярная подготовка и повышение квалификации профессиональных специалистов по защите информации.

2. Защита компьютерной информации: основные понятия и определения

Безопасность информации – степень (мера) защищенности информации, хранимой и обрабатываемой в автоматизированной системе (АС), от негативного воздействия на нее, с точки зрения нарушения ее физической и логической целостности (уничтожения, искажения) или несанкционированного использования.

Автоматизированная система – организованная совокупность средств, методов и мероприятий, используемых для регулярной обработки информации в процессе решения определенного круга прикладных задач.

Защищенность информации – поддержание на заданном уровне тех параметров информации, находящейся в автоматизированной системе, которые обеспечивают установленный статус ее хранения, обработки и использования.

Защита информации (ЗИ) – процесс создания и использования в автоматизированных системах специальных механизмов, поддерживающих установленный статус ее защищенности.

Комплексная защита информации – целенаправленное регулярное применение в автоматизированных системах средств и методов защиты информации, а также осуществление комплекса мероприятий с целью поддержания заданного уровня защищенности информации по всей совокупности показателей и условий, являющихся существенно значимыми с точки зрения обеспечения безопасности информации.

Безопасная информационная система – это система, которая, во-первых, защищает данные от несанкционированного доступа, во-вторых, всегда готова предоставить их своим пользователям, а в-третьих, надежно хранит информацию и гарантирует неизменность данных. Таким образом, безопасная система по определению обладает свойствами конфиденциальности, доступности и целостности.

Конфиденциальность – гарантия того, что секретные данные будут доступны только тем пользователям, которым этот доступ разрешен (такие пользователи называются авторизованными).

Доступность – гарантия того, что авторизованные пользователи всегда получат доступ к данным.

Целостность – гарантия сохранности данными правильных значений, которая обеспечивается запретом для неавторизованных пользователей каким-либо образом изменять, модифицировать, разрушать или создавать данные.

Требования безопасности могут меняться в зависимости от назначения системы, характера используемых данных и типа возможных угроз. Трудно представить систему, для которой были бы не важны свойства целостности и доступности, но свойство конфиденциальности не всегда является обязательным.

Понятия конфиденциальности, доступности и целостности могут быть определены не только по отношению к информации, но и к другим ресурсам вычислительной сети, например внешним устройствам или приложениям. Существует множество системных ресурсов, возможность “незаконного” использования которых может привести к нарушению безопасности системы. Например, неограниченный доступ к устройству печати позволяет злоумышленнику получать копии распечатываемых документов, изменять параметры настройки, что может привести к изменению очередности работ и даже к выводу устройства из строя. Свойство конфиденциальности, примененное к устройству печати, можно интерпретировать так: доступ к устройству имеют те и только те пользователи, которым этот доступ разрешен, причем они могут выполнять только те операции с устройством, которые для них определены. Свойство доступности устройства означает его готовность к использованию всякий раз, когда в этом возникает необходимость, а свойство целостности может быть определено как свойство неизменности параметров настройки данного устройства.

Важным для понимания дальнейших определений являются такие понятия, как объект, субъект, доступ.

Объект – пассивный компонент системы, хранящий, принимающий или передающий информацию.

Субъект – активный компонент системы, обычно представленный в виде пользователя, процесса или устройства, которому может потребоваться обращение к объекту или системе.

Доступ – взаимодействие между субъектом и объектом, обеспечивающее передачу информации между ними, или изменение состояния системы.

Доступ к информации – обеспечение субъекту возможности ознакомления с информацией и ее обработки, в частности, копирования, модификации или уничтожения информации.

Идентификация – присвоение субъектам и объектам доступа уникального идентификатора в виде номера, шифра, кода и т.п. с целью получения доступа к информации.

Аутентификация – проверка подлинности субъекта по предъявленному им идентификатору для принятия решения о предоставлении ему доступа к ресурсам системы.

Угроза – любое действие, направленное на нарушение конфиденциальности, целостности и/или доступности информации, а также на нелегальное использование других ресурсов информационной системы (ИС).

Уязвимость информации – возможность возникновения на каком-либо этапе жизненного цикла автоматизированной системы такого ее состояния, при котором создаются условия для реализации угроз безопасности информации. Атака – реализованная угроза.

Риск – это вероятностная оценка величины возможного ущерба, который может понести владелец информационного ресурса в результате успешно проведенной атаки.

Значение риска тем выше, чем более уязвимой является существующая система безопасности и чем выше вероятность реализации атаки.

Изначально защищенная информационная технология – информационная технология, которая изначально содержит все необходимые механизмы для обеспечения требуемого уровня защиты информации.

Качество информации – совокупность свойств, обусловливающих пригодность информации удовлетворять определенные потребности в соответствии с ее назначением

3. Классификация угроз безопасности информации

Известно большое количество разноплановых угроз безопасности информации различного происхождения. В качестве критериев деления множества угроз на классы могут использоваться виды порождаемых опасностей, степень злого умысла, источники проявления угроз и т.д. Все многообразие существующих классификаций может быть сведено к некоторой системной классификации. Дадим краткий комментарий к параметрам классификации, их значениям и содержанию.

Критерии классификации (1):

Виды угроз. Данный критерий является основополагающим, определяющим целевую направленность защиты информации.

Значениями данного параметра являются – физическая целостность, логическая целостность, содержание, конфиденциальность, право собственности.

Критерии классификации (2):

Происхождение угроз. Обычно выделяют два значения данного критерия: случайное и преднамеренное.

Под случайным понимается такое происхождение угроз, которое обусловливается спонтанными и не зависящими от воли людей обстоятельствами, возникающими в автоматизированной системе (АС) в процессе ее функционирования.

Наиболее известными событиями данного плана являются отказы, сбои, ошибки, стихийные бедствия и побочные влияния. Сущность перечисленных событий (кроме стихийных бедствий, сущность которых ясна) определяется следующим образом.

Отказ – нарушение работоспособности какого-либо элемента системы, приводящее к невозможности выполнения им основных своих функций.

Сбой – временное нарушение работоспособности какого-либо элемента системы, следствием чего может быть неправильное выполнение им в этот момент своей функции.

Ошибка – неправильное (разовое или систематическое) выполнение элементом одной или нескольких функций, происходящее вследствие специфического (постоянного или временного) его состояния.

Побочное влияние – негативное воздействие на систему в целом или отдельные ее элементы, оказываемое какими-либо явлениями, происходящими внутри системы или во внешней среде.

Преднамеренное происхождение угрозы обусловливается злоумышленными действиями людей.

Критерии классификации (3):

Предпосылки появления угроз. Обычно приводятся две возможные разновидности предпосылок: объективные (количественная или качественная недостаточность элементов системы) и субъективные.

К последним относятся – деятельность разведорганов иностранных государств, промышленный шпионаж, деятельность уголовных элементов, действия недобросовестных сотрудников системы.

Перечисленные разновидности предпосылок интерпретируются следующим образом.

Количественная недостаточность – физическая нехватка одного или нескольких элементов системы, вызывающая нарушения технологического процесса обработки данных и/или перегрузку имеющихся элементов.

Качественная недостаточность – несовершенство конструкции (организации) элементов системы, в силу этого могут появляться возможности случайного или преднамеренного негативного воздействия на обрабатываемую или хранимую информацию.

Деятельность разведорганов иностранных государств – специально организуемая деятельность государственных органов, профессионально ориентированных на добывание необходимой информации любыми способами и средствами.

К основным видам разведки относятся агентурная (несанкционированная деятельность профессиональных разведчиков, завербованных агентов и так называемых доброжелателей) и техническая, включающая радиоразведку (перехват радиоэлектронными средствами информации, циркулирующей в телекоммуникационных каналах), радиотехническую разведку (регистрацию спецсредствами электромагнитных излучений технических систем) и космическую разведку (использование космических кораблей и искусственных спутников Земли для наблюдения за территорией, ее фотографирования, регистрации радиосигналов и получения полезной информации любыми другими доступными способами).

Еще рассматриваются – промышленный шпионаж – негласная деятельность организации (в лице ее представителей) по добыванию информации, специально охраняемой от несанкционированной ее утечки или хищения, с целью создания для себя благоприятных условий и получения максимальных выгод (недобросовестная конкуренция); злоумышленные действия уголовных элементов – хищение информации или компьютерных программ в целях наживы;

Действия недобросовестных сотрудников – хищение (копирование) или уничтожение информационных массивов и/или программ по эгоистическим или корыстным мотивам, а также в результате несоблюдения установленного порядка работы с информацией.

Критерии классификации (4):

Источники угроз. Под источником угроз понимается непосредственный их генератор или носитель. Таким источником могут быть люди, технические средства, модели (алгоритмы), а также – программы, технологические схемы обработки, внешняя среда.

Попытаемся теперь, опираясь на приведенную системную классификацию угроз безопасности информации, определить полное множество угроз, потенциально возможных в современных автоматизированных системах. При этом мы должны учесть не только все известные (ранее проявлявшиеся) угрозы, но и такие угрозы, которые ранее не проявлялись, но потенциально могут возникнуть при применении новых концепций архитектурного построения АС и технологических схем обработки информации.

Классифицируем все возможные каналы утечки информации (КУИ) по двум критериям: по необходимости доступа к элементам АС для реализации того или иного КУИ и по зависимости появления КУИ от состояния АС.

По первому критерию КУИ могут быть разделены на не требующие доступа, т.е. позволяющие получать необходимую информацию дистанционно (например, путем визуального наблюдения через окна помещений АС), и требующие доступа в помещения АС. В свою очередь КУИ, воспользоваться которыми можно только получив доступ в помещения АС, делятся на КУИ, не оставляющие следы в АС (например, визуальный просмотр изображений на экранах мониторов или документов на бумажных носителях), и на КУИ, использование которых оставляет те или иные следы (например, хищение документов или машинных носителей информации).

По второму критерию КУИ делятся на потенциально существующие независимо от состояния АС (например, похищать носители информации можно независимо от того, в рабочем состоянии находятся средства АС или нет) и существующие только в рабочем состоянии АС (например, побочные электромагнитные излучения и наводки).

Приведем ориентировочную характеристику каналов несанкционированного получения информации выделенных нами классов.

КУИ 1-го класса – каналы, проявляющиеся безотносительно к обработке информации и без доступа злоумышленника к элементам системы.

Сюда может быть отнесено подслушивание разговоров, а также провоцирование на разговоры лиц, имеющих отношение к АС, и использование злоумышленником визуальных, оптических и акустических средств.

КУИ 2-го класса – каналы, проявляющиеся в процессе обработки информации без доступа злоумышленника к элементам АС. Сюда могут быть отнесены электромагнитные излучения различных устройств ЭВМ, аппаратуры и линий связи, паразитные наводки в цепях питания, телефонных сетях, системах теплоснабжения, вентиляции и т.д.

КУИ 3-го класса – каналы, проявляющиеся безотносительно к обработке информации с доступом злоумышленника к элементам АС, но без изменения последних. К ним относятся всевозможные виды копирования носителей информации и документов, а также хищение производственных отходов.

КУИ 4-го класса – каналы, проявляющиеся в процессе обработки информации с доступом злоумышленника к элементам АС, но без изменения последних. Сюда может быть отнесено запоминание и копирование информации в процессе обработки, использование программных ловушек и т.д.

КУИ 5-го класса – каналы, проявляющиеся безотносительно к обработке информации с доступом злоумышленника к элементам АС и с изменением программных или аппаратных средств. Среди этих каналов: подмена и хищение носителей информации и аппаратуры, включение в программы блоков типа троянский конь, компьютерный червь и т.п.

КУИ 6-го класса – каналы, проявляющиеся в процессе обработки информации с доступом злоумышленника к элементам АС и с изменением последних. Сюда может быть отнесено незаконное подключение к аппаратуре и линиям связи, а также снятие информации на шинах питания различных элементов АС.

4. Формы атак на объекты информационных систем

Формы атак. В общем случае программное обеспечение любой информационной системы состоит из трех основных компонентов: операционной системы, сетевого программного обеспечения (СПО) и системы управления базами данных (СУБД). Поэтому все попытки взлома защиты ИС на уровне программного обеспечения можно разделить на три группы.

Атаки на уровне программного обеспечения:

·        атаки на уровне систем управления базами данных;

·        атаки на уровне операционной системы;

·        атаки на уровне сетевого программного обеспечения.

Рассмотрим их по отдельности.

Атаки на уровне систем управления базами данных

Защита СУБД является одной из самых простых задач. Это связано с тем, что СУБД имеют строго определенную внутреннюю структуру и операции над элементами СУБД заданы довольно четко.

Есть четыре основных действия – поиск, вставка, удаление и замена элемента. Другие операции являются вспомогательными и применяются достаточно редко. Наличие строгой структуры и четко определенных операций упрощает решение задачи защиты СУБД. В большинстве случаев злоумышленники предпочитают взламывать защиту информационной системы на уровне операционной системы и получать доступ к файлам СУБД с помощью средств операционной системы. Однако в случае, если используется СУБД, не имеющая достаточно надежных защитных механизмов, или плохо протестированная версия СУБД, содержащая ошибки, или если при определении политики безопасности администратором СУБД были допущены ошибки, то становится вполне вероятным преодоление защиты, реализуемой на уровне СУБД. Кроме того, имеются два специфических сценария атаки на СУБД, для защиты от которых требуется применять специальные методы.

В первом случае результаты арифметических операций над числовыми полями СУБД округляются в меньшую сторону, а разница суммируется в некоторой другой записи СУБД (как правило, эта запись содержит личный счет злоумышленника в банке, а округляемые числовые поля относятся к счетам других клиентов банка). Во втором случае злоумышленник получает доступ к полям записей СУБД, для которых доступной является только статистическая информация Идея атаки на СУБД – так хитро сформулировать запрос, чтобы множество записей, для которого собирается статистика, состояло только из одной записи.

Атаки на уровне операционной системы

Защищать операционную систему, в отличие от СУБД, гораздо сложнее. Дело в том, что внутренняя структура современных операционных систем чрезвычайно сложна, и поэтому соблюдение адекватной политики безопасности является значительно более трудной задачей.

Успех реализации того или иного алгоритма атаки на практике в значительной степени зависит от архитектуры и конфигурации конкретной операционной системы, являющейся объектом этой атаки. Однако имеются атаки, которым может быть подвергнута практически любая операционная система.

Атаки на уровне операционных систем – кража пароля (1):

– подглядывание за пользователем, когда тот вводит пароль, дающий право на работу с операционной системой, даже если во время ввода пароль не высвечивается на экране дисплея, злоумышленник может легко узнать пароль, просто следя за перемещением пальцев пользователя по клавиатуре.

Атаки на уровне операционных систем – кража пароля (2):

– получение пароля из файла, в котором этот пароль был сохранен пользователем, не желающим затруднять себя вводом пароля при подключении к сети. Как правило, такой пароль хранится в файле в незашифрованном виде.

Атаки на уровне операционных систем – кража пароля (3):

– поиск пароля, который пользователи, чтобы не забыть, записывают на календарях, в записных книжках или на оборотной стороне компьютерных клавиатур и т.д. Особенно часто подобная ситуация встречается, если администраторы заставляют пользователей применять трудно запоминаемые пароли.

Атаки на уровне операционных систем – кража пароля (4):

– кража внешнего носителя парольной информации (дискеты или электронного ключа, на которых хранится пароль пользователя, предназначенный для входа в операционную систему).

А также – полный перебор всех возможных вариантов пароля:

– подбор пароля по частоте встречаемости символов, с помощью словарей наиболее часто применяемых паролей, с привлечением знаний о конкретном пользователе – его имени, фамилии, номера телефона, даты рождения и т.д., с использованием сведений о существовании эквивалентных паролей, при этом из каждого класса опробуется всего один пароль, что может значительно сократить время перебора.

– сканирование жестких дисков компьютера. Злоумышленник последовательно пытается обратиться к каждому файлу, хранимому на жестких дисках компьютерной системы, если объем дискового пространства достаточно велик, можно быть вполне уверенным, что при описании доступа к файлам и каталогам администратор допустил хотя бы одну ошибку, в результате чего все такие каталоги и файлы будут прочитаны злоумышленником.

– Сборка “мусора” (если средства операционной системы позволяют восстанавливать ранее удаленные объекты, злоумышленник может воспользоваться этой возможностью).

– Превышение полномочий (используя ошибки в программном обеспечении или в администрировании операционной системы, злоумышленник получает полномочия администратора).

В их число входят:  запуск программы от имени пользователя, имеющего необходимые полномочия, или в качестве системной программы (драйвера, сервиса, и т.д.); подмена динамически загружаемой библиотеки, используемой системными программами, или изменение переменных среды, описывающих путь к таким библиотекам; модификация кода или данных подсистемы защиты самой операционной системы.

– Отказ в обслуживании (целью этой атаки является частичный или полный вывод из строя операционной системы).

В их число входят: захват ресурсов (программа злоумышленника производит захват всех имеющихся в операционной системе ресурсов, а затем входит в бесконечный цикл); бомбардировка запросами (программа злоумышленника постоянно направляет операционной системе запросы, реакция на которые требует привлечения значительных ресурсов компьютера); использование ошибок в программном обеспечении или администрировании.

Если в программном обеспечении компьютерной системы нет ошибок, и ее администратор строго соблюдает политику безопасности, рекомендованную разработчиками операционной системы, то атаки всех перечисленных типов малоэффективны. Дополнительные меры, которые должны быть предприняты для повышения уровня безопасности, в значительной степени зависят от конкретной операционной системы, под управлением которой работает данная компьютерная система. Тем не менее, приходится признать, что вне зависимости от предпринятых мер полностью устранить угрозу взлома компьютерной системы на уровне операционной системы невозможно. Поэтому политика обеспечения безопасности должна проводиться так, чтобы, даже преодолев защиту, создаваемую средствами операционной системы, хакер не смог нанести серьезного ущерба.

Атаки на уровне сетевого программного обеспечения (СПО)

Оно является наиболее уязвимым, потому что канал связи, по которому передаются сообщения, чаще всего не защищен, и всякий, кто имеет доступ к этому каналу, может перехватывать сообщения и отправлять свои собственные. Поэтому на уровне СПО возможны следующие атаки.

Атаки на уровне СПО (1):

Прослушивание сегмента локальной сети (в пределах одного и того же сегмента локальной сети любой подключенный к нему компьютер в состоянии принимать сообщения, адресованные другим компьютерам).

Следовательно, если компьютер злоумышленника подсоединен к некоторому сегменту локальной сети, то ему становится доступен весь информационный обмен между компьютерами этого сегмента.

Атаки на уровне СПО (2):

Перехват сообщений на маршрутизаторе (если злоумышленник имеет привилегированный доступ к сетевому маршрутизатору, то он получает возможность перехватывать все сообщения).

Хотя тотальный перехват невозможен из-за слишком большого объема, чрезвычайно привлекательным для злоумышленника является выборочный перехват сообщений, содержащих пароли пользователей и их электронную почту).

А также – создание ложного маршрутизатора (путем отправки в сеть сообщений специального вида злоумышленник добивается, чтобы его компьютер стал маршрутизатором сети, после чего получает доступ ко всем проходящим через него сообщениям); навязывание сообщений (отправляя в сеть сообщения с ложным обратным сетевым адресом, злоумышленник переключает на свой компьютер уже установленные сетевые соединения и в результате получает права пользователей, чьи соединения обманным путем были переключены на компьютер злоумышленника); отказ в обслуживании (злоумышленник отправляет в сеть сообщения специального вида, после чего одна или несколько компьютерных систем, подключенных к сети, полностью или частично выходят из строя).

5. Анализ угроз и каналов утечки информации

Анализ потенциально возможных угроз информации является одним из первых и обязательным этапом разработки любой защищенной ИС. При этом составляется как можно более полная совокупность угроз, анализируется степень риска при реализации той или иной угрозы, после чего определяются направления защиты информации в конкретной ИС.

Разнообразие потенциальных угроз информации в ИС столь велико, что не позволяет предусмотреть каждую из них, поэтому анализируемые характеристики угроз следует выбирать с позиций здравого смысла, одновременно выявляя не только собственно угрозы, вероятность их осуществления, масштаб потенциального ущерба, но и их источники.

Идентификация угроз предполагает рассмотрение воздействий и последствий реализации угроз. Проблемы, возникшие после реализации угрозы, сводятся к раскрытию источников утечки, модификации защиты, разрушению информации или отказу в обслуживании. Более значительные долговременные последствия реализации угрозы приводят к утрате управления войсками, нарушению тайны, потере адекватности данных, к человеческим жертвам или иным долговременным эффектам.

Лучше всего анализировать последствия реализации угроз еще на стадии проектирования локальной сети, рабочего места или информационной системы, чтобы заранее определить потенциальные потери и установить требования к мерам обеспечения безопасности. Выбор защитных и контрольных мероприятий на ранней стадии проектирования ИС требует гораздо меньших затрат, чем выполнение подобной работы на эксплуатируемой ИС. Но и в последнем случае анализ опасностей помогает выявить уязвимые места в защите системы, которые можно устранить разумными средствами.

В большинстве случаев проведение анализа возможных опасностей позволяет персоналу лучше осознать проблемы, которые могут проявиться во время работы. Прежде за разработку мероприятий по защите информации обычно отвечал менеджер системы информации и управления или автоматизированной обработки данных. Теперь применяется другой подход, при котором в каждой организации ответственность за выполнение анализа опасностей и разработку методики их исключения возлагается на несколько групп служащих.

В рабочую группу, призванную анализировать возможные опасные ситуации, рекомендуется включать следующих специалистов.

В группу анализа опасных ситуаций следует включить (1):

• аналитика по опасным ситуациям (лицо, назначенное для проведения анализа).

Этот специалист является ответственным за сбор исходных данных и за представление руководству информации, способствующей лучшему выбору защитных мероприятий.

В группу анализа опасных ситуаций следует включить (2):

• пользователей, ответственных за предоставление аналитику точной информации о применяемых приложениях.

В группу анализа опасных ситуаций следует включить (3):

• служащих, занимающихся эксплуатацией здания, работников отдела кадров, охрану и других сотрудников, которые могут предоставить информацию о внешних опасностях и проблемах, связанных с окружающей средой.

В группу анализа опасных ситуаций следует включить (4):

• персонал сопровождения сети, на который возлагается ответственность за предоставление информации об аппаратном и программном обеспечении, а также о применяемых процедурах по ограничению прав доступа и замене (смене) паролей.

В группу анализа опасных ситуаций следует включить (5):

• представителей руководства, ответственных за обеспечение защиты ценностей организации.

Неформальная модель нарушителя.

Нарушитель – это лицо, предпринявшее попытку выполнения запрещенных операций (действий) либо по ошибке и незнанию, либо осознанно со злым умыслом (из корыстных интересов) или без такового.

Ради игры или удовольствия, с целью самоутверждения и т.п. с использованием для этого различных возможностей, методов и средств. Злоумышленником будем называть нарушителя, намеренно идущего на нарушение из корыстных побуждений.

Неформальная модель нарушителя отражает его практические и теоретические возможности, априорные знания, время и место действия и т.п. Для достижения своих целей нарушитель должен приложить усилия, затратить определенные ресурсы. Исследовав причины нарушений, можно либо повлиять на эти причины (если возможно), либо точнее определить требования к системе защиты от данного вида нарушений или преступлений. В каждом конкретном случае, исходя из существующей технологии обработки информации, может быть определена модель нарушителя, которая должна быть адекватна реальному нарушителю для данной ИС.

При разработке модели нарушителя формируются:

• предположения о категориях лиц, к которым может принадлежать нарушитель.

А также –  предположения о мотивах (целях) нарушителя; предположения о квалификации нарушителя и его технической оснащенности; ограничения и предположения о характере возможных действий нарушителей.

По отношению к ИС нарушители бывают внутренними (из числа персонала) или внешними (посторонние лица).

Внутренними нарушителями могут быть (1):

• пользователи (операторы) системы;

• персонал, обслуживающий технические средства (инженеры, техники).

Внутренними нарушителями могут быть (2):

• сотрудники отделов разработки и сопровождения ПО (прикладные и системные программисты).

А также:

• технический персонал, обслуживающий здания (уборщики, электрики, сантехники и другие сотрудники, имеющие доступ в здания и помещения, где расположены компоненты ИС);

• сотрудники службы безопасности ИС;

• руководители различных уровней должностной иерархии.

Посторонними нарушителями могут быть (1):

• клиенты;

• случайные посетители;

• представители предприятий, обеспечивающих энерго-, водо- и теплоснабжение организации.

Посторонними нарушителями могут быть (2):

• представители конкурирующих организаций (иностранных спецслужб) или лица, действующие по их заданию;

• любые лица за пределами контролируемой территории.

Можно выделить три основных мотива нарушений безопасности ИС со стороны пользователей: безответственность, самоутверждение и корыстный интерес.

При нарушениях, вызванных безответственностью, пользователь целенаправленно или случайно производит какие-либо разрушающие действия, не связанные, тем не менее, со злым умыслом. В большинстве случаев это следствие некомпетентности или небрежности.

Некоторые пользователи считают получение доступа к системным наборам данных крупным успехом, затевая своего рода игру “пользователь – против системы” ради самоутверждения либо в собственных глазах, либо в глазах коллег.

Нарушение безопасности ИС может быть вызвано и корыстным интересом пользователя системы. В этом случае он будет целенаправленно пытаться преодолеть систему защиты для доступа к хранимой, передаваемой и обрабатываемой в ИС информации. Даже если ИС имеет средства, чрезвычайно усложняющие проникновение, полностью защитить ее от этого практически невозможно.

Заключение

Значение защиты. С повышением значимости и ценности информации соответственно растёт и важность её защиты. С одной стороны, информация стоит денег. Значит, утечка или утрата информации повлечёт материальный ущерб. С другой стороны, информация – это управление. Несанкционированное вмешательство в управление может привести к катастрофическим последствиям в объекте управления – производстве, транспорте, военном деле. Например, современная военная наука утверждает, что полное лишение средств связи сводит боеспособность армии до нуля.

Защиту информации (ЗИ) – это меры для ограничения доступа к информации для каких-либо лиц (категорий лиц), а также для удостоверения подлинности и неизменности информации.

Вторая задача может показаться слабо связанной с первой, но на самом деле это не так. В первом случае владелец информации стремится воспрепятствовать несанкционированному доступу к ней, а во втором случае – несанкционированному изменению, в то время как доступ для чтения разрешён.

Список литературы

1.     Герасименко В. А. Защита информации в автоматизированных си­стемах обработки данных. -М: Энергоатомиздат, 2006.

2.     Гайкович А. Г., Першин А. В. Безопасность электронных банков­
ских систем. -М.: Единая Европа, 2001.

3.     Мамиконов А. Г., Кульба В. В., Шелков А. Б. Достоверность, защита и резервирование информации в АСУ.   -М.: Энергоатомиздат,
2000.

4.     Расторгуев С. П. Программные методы защиты информации в ком­пьютерах и сетях. – М.: изд-во агентства “Яхтсмен”, 2002.

5.     Батурин Ю. М., Жодзишский А. М. Компьютерная преступность и
компьютерная безопасность. – М.: Юридическая литература, 2001.

6.     Михайлов С. Ф., Петров В. А., Тимофеев Ю. А. Информационная
безопасность. Защита информации в автоматизированных системах. Основные концепции: Учебное пособие. – М.: МИФИ, 2005.

Детали:

Тип работы: Реферат

Предмет: Информатика, Информационная безопасность

Год написания: 2010

Добавить комментарий

Ваш email не будет показан.

Получать новые комментарии по электронной почте. Вы можете подписаться без комментирования.